skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rose, Ian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Apparent polar wander paths (APWPs) synthesized from paleomagnetic poles provide the most direct data for reconstructing past paleogeography and plate motions for times earlier than ca. 200 Ma. In this contribution, we describe a new method for APWP synthesis that extends the paleomagnetic Euler pole analysis of Gordon et al. (1984,https://doi.org/10.1029/TC003i005p00499) by placing it within the framework of a Bayesian inverse problem. This approach incorporates uncertainties in pole positions and age that are often ignored in standard treatments. The paleomagnetic Euler poles resulting from the inversions provide estimates for full‐vector plate motion (both latitude and longitude) and associated uncertainty. The method allows for inverting for one or more Euler poles with the timing of changepoints being solved as part of the inversion. In addition, the method allows the incorporation of true polar wander rotations, thus providing an avenue for probabilistic partitioning of plate tectonic motion and true polar wander based on paleomagnetic poles. We show example inversions on synthetic data to demonstrate the method's capabilities. We illustrate application of the method to Cenozoic Australia paleomagnetic poles which can be compared to independent plate reconstructions. A two‐Euler pole inversion for the Australian record recovers northward acceleration of Australia in the Eocene with rates that are consistent with plate reconstructions. We also apply the method to constrain rapid rates of motion for cratonic North America associated with the Keweenawan Track of late Mesoproterozoic paleomagnetic poles. The application of Markov chain Monte Carlo methods to estimate paleomagnetic Euler poles can open new directions in quantitative paleogeography. 
    more » « less
  2. null (Ed.)
    The mode and rates of tectonic processes and lithospheric growth during the Archean [4.0 to 2.5 billion years (Ga) ago] are subjects of considerable debate. Paleomagnetism may contribute to the discussion by quantifying past plate velocities. We report a paleomagnetic pole for the ~3180 million year (Ma) old Honeyeater Basalt of the East Pilbara Craton, Western Australia, supported by a positive fold test and micromagnetic imaging. Comparison of the 44°±15° Honeyeater Basalt paleolatitude with previously reported paleolatitudes requires that the average latitudinal drift rate of the East Pilbara was ≥2.5 cm/year during the ~170 Ma preceding 3180 Ma ago, a velocity comparable with those of modern plates. This result is the earliest unambiguous evidence yet uncovered for long-range lithospheric motion. Assuming this motion is due primarily to plate motion instead of true polar wander, the result is consistent with uniformitarian or episodic tectonic processes in place by 3.2 Ga ago. 
    more » « less